How do you prove (csc(-t)-sin(-t))/sin(t) = -cot^2(t)?

1 Answer
May 16, 2015

Remember that sin is an odd function so sin(-t)=-sin(t) and that cot=cos/sin and csc=1/sin so you get:

(1/sin(-t)-sin(-t))/sin(t)=-cos^2(t)/sin^2(t)
(-1/sin(t)+sin(t))/sin(t)=-cos^2(t)/sin^2(t)
(-1+sin^2(t))/cancel(sin^2(t))=- cos^2(t)/cancel(sin^2(t))
-cos^2(t)=-cos^2(t)

Where I used the fact that: sin^2(t)+cos^2(t)=1
and: cos^2(t)=1-sin^2(t)
so -cos^2(t)=-1+sin^2(t)