How do you prove #(csc(-t)-sin(-t))/sin(t) = -cot^2(t)#?

1 Answer
May 16, 2015

Remember that #sin# is an odd function so #sin(-t)=-sin(t)# and that #cot=cos/sin# and #csc=1/sin# so you get:

#(1/sin(-t)-sin(-t))/sin(t)=-cos^2(t)/sin^2(t)#
#(-1/sin(t)+sin(t))/sin(t)=-cos^2(t)/sin^2(t)#
#(-1+sin^2(t))/cancel(sin^2(t))=- cos^2(t)/cancel(sin^2(t))#
#-cos^2(t)=-cos^2(t)#

Where I used the fact that: #sin^2(t)+cos^2(t)=1#
and: #cos^2(t)=1-sin^2(t)#
so #-cos^2(t)=-1+sin^2(t)#