How do you prove #sec^2 x - cot^2 ( pi/2-x) =1#?

1 Answer
Feb 5, 2016

Using the following:

  • #sec(x) = 1/cos(x)#
  • #cot(x) = cos(x)/sin(x)#
  • #cos(-x) = cos(x)#
  • #sin(-x) = -sin(x)#
  • #cos(x-pi/2) = sin(x)#
  • #sin(x-pi/2) = -cos(x)#
  • #sin^2(x)+cos^2(x) = 1 => 1 - sin^2(x) = cos^2(x)#

We have

#sec^2(x)-cot^2(pi/2-x) = sec^2(x) - cot^2(-(x-pi/2))#

#=1/cos^2(x) - cos^2(-(x-pi/2))/sin^2(-(x-pi/2))#

#=1/cos^2(x)-cos^2(x-pi/2)/(-sin(x-pi/2))#

#=1/cos^2(x) - sin^2(x)/cos^2(x)#

#= (1-sin^2(x))/cos^2(x)#

#=cos^2(x)/cos^2(x)#

#= 1#