How do you prove sec(tan^-1(sqrt3/3))?

2 Answers
Apr 15, 2018

sec(tan^(-1)(sqrt3/3))=(2sqrt3)/3

Explanation:

Let tan^(-1)(sqrt3/3)=A then tanA=sqrt3/3.

rarrsecA=sqrt(1+tan^2A)=sqrt(1+(sqrt3/3)^2)=(2sqrt3)/3

rarrA=sec^(-1)((2sqrt3)/3)

Now, sec(tan^(-1)(sqrt3/3))=sec(sec^(-1)((2sqrt3)/3))=(2sqrt3)/3

Apr 18, 2018

color(indigo)(=> 2 / sqrt 3 " or " (2 sqrt 3) / 3

Explanation:

sec (tan^-1 (sqrt3 / 3))

=> sec (tan^-1 (1/sqrt3))

![www.math-only-math.com/images/http://trigonometrical-ratios-table.png](https://useruploads.socratic.org/vpLl8Y4aR0SDskKTPeLQ_trigonometry%20values.png)

=> sec (tan^-1( tan (pi/6)), color(violet)(" as "tan (pi/6) = 1 / sqrt3 " from table above"

=> sec (pi/6) = 1/ cos (pi/6) = 1 / (sqrt 3/2)

color(indigo)(=> 2 / sqrt 3 " or " (2 sqrt 3) / 3