Recall the Pythagorean Identity #sin^2x+cos^2x=1#. Divide both sides by #cos^2x#:
#(sin^2x+cos^2x)/cos^2x=1/cos^2x#
#->tan^2x+1=sec^2x#
We will be making use of this important identity.
Let's focus on this expression:
#secx+1#
Note that this is equivalent to #(secx+1)/1#. Multiply the top and bottom by #secx-1# (this technique is known as conjugate multiplication):
#(secx+1)/1*(secx-1)/(secx-1)#
#->((secx+1)(secx-1))/(secx-1)#
#->(sec^2x-1)/(secx-1)#
From #tan^2x+1=sec^2x#, we see that #tan^2x=sec^2x-1#. Therefore, we can replace the numerator with #tan^2x#:
#(tan^2x)/(secx-1)#
Our problem now reads:
#(tan^2x)/(secx-1)+(1-tan^2x) / (secx-1) = cosx/(1-cosx)#
We have a common denominator, so we can add the fractions on the left hand side:
#(tan^2x)/(secx-1)+(1-tan^2x) / (secx-1) = cosx/(1-cosx)#
#->(tan^2x+1-tan^2x)/(secx-1)=cosx/(1-cosx)#
The tangents cancel:
#(cancel(tan^2x)+1-cancel(tan^2x))/(secx-1)=cosx/(1-cosx)#
Leaving us with:
#1/(secx-1)=cosx/(1-cosx)#
Since #secx=1/cosx#, we can rewrite this as:
#1/(1/cosx-1)=cosx/(1-cosx)#
Adding fractions in the denominator, we see:
#1/(1/cosx-1)=cosx/(1-cosx)#
#->1/(1/cosx-(cosx)/(cosx))=cosx/(1-cosx)#
#->1/((1-cosx)/cosx)=cosx/(1-cosx)#
Using the property #1/(a/b)=b/a#, we have:
#cosx/(1-cosx)=cosx/(1-cosx)#
And that completes the proof.