How do you prove #sec2theta=sec^2theta/(2-sec^2theta)#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer P dilip_k Aug 19, 2016 #"To prove: "sec2theta=sec^2theta/(2-sec^2theta)# #RHS=sec^2theta/(2-sec^2theta)# #=(cos^2thetasec^2theta)/(cos^2theta(2-sec^2theta))# #=1/(2cos^2theta-cos^2thetasec^2theta)# #=1/(2cos^2theta-1)# #=1/cos(2theta)=sec2theta=LHS# PROVED Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 12767 views around the world You can reuse this answer Creative Commons License