How do you prove sin (π/2 – x) = sin (π/2 + x)?

2 Answers
Mar 17, 2016

What proofs are available depends on what facts we already have as given. One simple proof relies on the following:

  • sin(x) = -sin(x-pi)
    -sin(-x) = -sin(x)

With those, we have

sin(pi/2-x) = -sin((pi/2-x)-pi)

=-sin(-x-pi/2)

=-sin(-(pi/2+x))

=-(-sin(pi/2+x))

=sin(pi/2+x)

Mar 18, 2016

Apply the sum identities.
sin (pi/2 - x) = sin (pi/2).cos x - cos (pi/2).sin x = cos x
because sin (pi/2) = 1 and cos (pi/2) = 0
sin (pi/2 + x) = sin (pi/2).cos x + cos (pi/2) sin x = cos x
Therefor,
sin (pi/2 - x) = cos x = sin (pi/2 + x)