How do you prove (sin 2x) / (1 + cos2x) = tan xsin2x1+cos2x=tanx?

1 Answer
Mar 20, 2016

see explanation

Explanation:

Manipulating the left side usingcolor(blue)" Double angle formulae " Double angle formulae

• sin2x = 2sinxcosx sin2x=2sinxcosx

• cos2x = cos^2x - sin^2x cos2x=cos2xsin2x

and using sin^2x + cos^2x = 1 " we can also obtain " sin2x+cos2x=1 we can also obtain

cos2x = (1 - sin^2x) - sin^2x = 1 - 2sin^2x cos2x=(1sin2x)sin2x=12sin2x

and cos2x = cos^2x - (1 - cos^2x ) = 2cos^2x - 1 cos2x=cos2x(1cos2x)=2cos2x1

rArr(sin2x)/(1+cos2x) = (2sinxcosx)/(1+2cos^2x-1) = (2sinxcosx)/(2cos^2x)sin2x1+cos2x=2sinxcosx1+2cos2x1=2sinxcosx2cos2x

= (cancel(2) sinx cancel(cosx))/(cancel(2) cancel(cosx) cosx)= (sinx)/(cosx) = tanx = " right side "