How do you prove (sin 2x) / (1 + cos2x) = tan xsin2x1+cos2x=tanx?
1 Answer
Mar 20, 2016
see explanation
Explanation:
Manipulating the left side using
color(blue)" Double angle formulae " Double angle formulae
• sin2x = 2sinxcosx ∙sin2x=2sinxcosx
• cos2x = cos^2x - sin^2x ∙cos2x=cos2x−sin2x and using
sin^2x + cos^2x = 1 " we can also obtain " sin2x+cos2x=1 we can also obtain
cos2x = (1 - sin^2x) - sin^2x = 1 - 2sin^2x cos2x=(1−sin2x)−sin2x=1−2sin2x and
cos2x = cos^2x - (1 - cos^2x ) = 2cos^2x - 1 cos2x=cos2x−(1−cos2x)=2cos2x−1
rArr(sin2x)/(1+cos2x) = (2sinxcosx)/(1+2cos^2x-1) = (2sinxcosx)/(2cos^2x)⇒sin2x1+cos2x=2sinxcosx1+2cos2x−1=2sinxcosx2cos2x
= (cancel(2) sinx cancel(cosx))/(cancel(2) cancel(cosx) cosx)= (sinx)/(cosx) = tanx = " right side "