How do you prove sin(a+b) + sin(a+b) = 2sinacosb sin(a+b)+sin(a+b)=2sinacosb?

1 Answer
Mar 27, 2016

You cannot prove it. It is not always true. But it is true that sin(a+b)+sin(a-b) = 2sinacosbsin(a+b)+sin(ab)=2sinacosb

Explanation:

sin(a+b) = sinacosb+cosasinbsin(a+b)=sinacosb+cosasinb.

So,

sin(a+b)+sin(a+b) = 2sin(a+b)sin(a+b)+sin(a+b)=2sin(a+b)

= 2(sinacosb+cosasinb)=2(sinacosb+cosasinb)

= 2sinacosb+2cosasinb=2sinacosb+2cosasinb.

The last is equal to 2sinacosb2sinacosb only if cosa = 0cosa=0 or sinb = 0sinb=0

But

sin(a-b) = sinacosb-cosasinbsin(ab)=sinacosbcosasinb.

So,

sin(a+b)+sin(a-b) = (sinacosb+cosasinb)+(sinacosb-cosasinb)sin(a+b)+sin(ab)=(sinacosb+cosasinb)+(sinacosbcosasinb)

= 2sinacosb=2sinacosb