How do you prove # sin(a+b) + sin(a+b) = 2sinacosb #?

1 Answer
Mar 27, 2016

You cannot prove it. It is not always true. But it is true that #sin(a+b)+sin(a-b) = 2sinacosb#

Explanation:

#sin(a+b) = sinacosb+cosasinb#.

So,

#sin(a+b)+sin(a+b) = 2sin(a+b)#

# = 2(sinacosb+cosasinb)#

# = 2sinacosb+2cosasinb#.

The last is equal to #2sinacosb# only if #cosa = 0# or #sinb = 0#

But

#sin(a-b) = sinacosb-cosasinb#.

So,

#sin(a+b)+sin(a-b) = (sinacosb+cosasinb)+(sinacosb-cosasinb)#

# = 2sinacosb#