How do you prove sin(a+b) + sin(a+b) = 2sinacosb ?

1 Answer
Mar 27, 2016

You cannot prove it. It is not always true. But it is true that sin(a+b)+sin(a-b) = 2sinacosb

Explanation:

sin(a+b) = sinacosb+cosasinb.

So,

sin(a+b)+sin(a+b) = 2sin(a+b)

= 2(sinacosb+cosasinb)

= 2sinacosb+2cosasinb.

The last is equal to 2sinacosb only if cosa = 0 or sinb = 0

But

sin(a-b) = sinacosb-cosasinb.

So,

sin(a+b)+sin(a-b) = (sinacosb+cosasinb)+(sinacosb-cosasinb)

= 2sinacosb