How do you prove #sin x + cos x * cot x = csc x#?

1 Answer
Nov 30, 2016

We will use the following identities to attack the problem:

#cotx = 1/tanx = 1/(sinx/cosx) = cosx/sinx#
#cscx = 1/sinx#
#cos^2x + sin^2x = 1#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#sinx + cosx * cosx/sinx = 1/sinx#

#sinx + cos^2x/sinx = 1/sinx#

Put the left hand side on a common denominator.

#sin^2x/sinx + cos^2x/sinx = 1/sinx#

#(sin^2x + cos^2x)/sinx= 1/sinx#

#1/sinx = 1/sinx#

#LHS = RHS#

Identity proved!

Hopefully this helps!