How do you prove #Sin(x-y) Cos y + Cos(x-y) Sin y = Sinx#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub May 13, 2016 see below Explanation: Use Properties:#sin(x-y)=sinxcosy-cosxsiny# and #cos(x-y)=cosxcosy+sinxsiny# Left Side: #=sin(x-y)cosy+cos(x-y)siny# #=(sinxcosy-cosxsiny)cosy+(cosxcosy+sinxsiny)siny# #=sinxcos^2y-cosxsinycosy+cosxsinycosy+sinxsin^2y# #=sinxcos^2y+sinxsin^2y# #=sinx(cos^2y+sin^2y)# #=sinx*1# #=sinx# #=#Right Side Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 14336 views around the world You can reuse this answer Creative Commons License