Let #y=sinh^-1t# then by definition
#t=sinh y =(e^y-e^-y)/2#
#2t=e^y-e^-y#
#e^y-2t-e^-y=0#
#e^y-2t-1/e^y=0#
#e^(2y)-2te^y-1=0#
Let #x=e^y# then we have
#x^2-2tx-1=0#--> Now use quadratic formula to solve
#x=(2t+-sqrt(4t^2+4))/2#
#e^y = (2t+-sqrt(4t^2+4))/2#
#e^y = (2t+-sqrt(4(t^2+1)))/2#
#2e^y = 2t+-2sqrt(t^2+1)#
#e^y=t+-sqrt(t^2+1)#
#ln e^y = ln (t+-sqrt(t^2+1))#
#y=ln (t+sqrt(t^2+1))#
#sinh ^-1 t = ln (t+sqrt(t^2+1))#
#=#Right side