show below:
#color(blue)[(sinx + cosx)(tanx + cotx)=secx + cscx]#
#L.H.S=color(blue)[(sinx + cosx)(tanx + cotx)]=#
#sinx*tanx+sinx*cotx+cosx*tanx+cosx*cotx=#
#sin^2x/cosx+cosx+sinx+cos^2x/sinx=#
#(1-cos^2x)/cosx+cosx+sinx+(1-sin^2x)/sinx=#
#1/cosx-cos^2x/cosx+cosx+sinx+1/sinx-sin^2x/sinx=#
#secx-cosx+cosx+sinx+cscx-sinx=color(blue)[secx+cscx]=R.H.S#
#color(red)["Useful Trigonometric Identities"]#
#cos^2theta+sin^2theta=1#
#1+tan^2theta=sec^2theta#
#sin2theta=2sin theta cos theta#
#cos2theta=cos^2theta-sin^2theta=2cos^2theta-1=1-2sin^2theta#
#cos^2theta=1/2(1+cos2theta)#
#sin^2theta=1/2(1-cos2theta)#
#tanx=sinx/cosx#
#cotx=cosx/sinx#
#1/cosx=secx#
#1/sinx=cscx#