How do you prove #(sinx+cosx)(Tanx+cotx)=secx+cscx#?
1 Answer
Mar 22, 2018
We have:
#(sinx + cosx)(sinx/cosx + cosx/sinx) = secx +cscx#
#(sinx + cosx)((sin^2x + cos^2x)/(sinxcosx)) = secx + cscx#
#(sinx +cosx)/(sinxcosx) = secx + cscx#
#sinx/(sinxcosx) + cosx/(sinxcosx) = secx + cscx#
#1/cosx + 1/sinx = secx + cscx#
#secx + cscx = secx + cscx#
#LHS = RHS#
Hopefully this helps!