How do you prove (sinx+cosx)(tanx+cotx)=secx+cscx?
1 Answer
Mar 22, 2018
We have:
(sinx+cosx)(sinxcosx+cosxsinx)=secx+cscx
(sinx+cosx)(sin2x+cos2xsinxcosx)=secx+cscx
sinx+cosxsinxcosx=secx+cscx
sinxsinxcosx+cosxsinxcosx=secx+cscx
1cosx+1sinx=secx+cscx
secx+cscx=secx+cscx
LHS=RHS
Hopefully this helps!