How do you prove (sinx+cosx)(tanx+cotx)=secx+cscx?

1 Answer
Mar 22, 2018

We have:

(sinx+cosx)(sinxcosx+cosxsinx)=secx+cscx

(sinx+cosx)(sin2x+cos2xsinxcosx)=secx+cscx

sinx+cosxsinxcosx=secx+cscx

sinxsinxcosx+cosxsinxcosx=secx+cscx

1cosx+1sinx=secx+cscx

secx+cscx=secx+cscx

LHS=RHS

Hopefully this helps!