How do you prove tan^-1(1/3)+tan^-1(1/5)=tan^-1(4/7)?

2 Answers
Oct 20, 2016

See explanation...

Explanation:

For any alpha and beta we have:

tan(alpha+beta) = (tan(alpha)+tan(beta)) / (1-tan(alpha)tan(beta))

Let alpha = tan^(-1)(1/3) and beta = tan^(-1)(1/5)

Note that alpha in [0, 1) and beta in [0, 1), so alpha < tan^(-1) = pi/4 and beta < pi/4. Hence alpha+beta < pi/2 is in the range of tan^(-1)

Then we find:

tan(alpha+beta) = (tan(alpha) + tan(beta))/(1-tan(alpha)tan(beta))

color(white)(tan(alpha+beta)) = (1/3 + 1/5)/(1-1/3*1/5)

color(white)(tan(alpha+beta)) = (8/15)/(14/15)

color(white)(tan(alpha+beta)) = 8/14

color(white)(tan(alpha+beta)) = 4/7

So:

tan^(-1)(1/3) + tan^(-1)(1/5) = alpha + beta = tan^(-1)(4/7)

Oct 20, 2016

See the proof below
tan^-1(4/7)=tan^-1(1/3)+tan^-1(1/5)

Explanation:

Let us have two angles a and b
Then tan(a+b)=sin(a+b)/cos(a+b)=( sinacosb+sinbcosa)/(cosacosb-sinasinb)
Divide throughout by cosacosb
tan(a+b)=(((sinacosb)/(cosacosb))+((sinbcosa)/(cosacosb)))/((cosacosb)/(cosacosb)-(sinasinb)/(cosacosb)
Simplifyng we get
tan(a+b)=(tana +tanb)/(1-tanatanb)
Here we have tana=1/3 and tanb=1/5
so tan(a+b)=(1/3+1/5)/(1-(1/3*1/5))=(8/15)/(14/15)=8/14=4/7
tan^-1(4/7)=tan^-1(1/3)+tan^-1(1/5)