How do you prove tan^-1(1/3)+tan^-1(1/5)=tan^-1(4/7)tan1(13)+tan1(15)=tan1(47)?

2 Answers
Oct 20, 2016

See explanation...

Explanation:

For any alphaα and betaβ we have:

tan(alpha+beta) = (tan(alpha)+tan(beta)) / (1-tan(alpha)tan(beta))tan(α+β)=tan(α)+tan(β)1tan(α)tan(β)

Let alpha = tan^(-1)(1/3)α=tan1(13) and beta = tan^(-1)(1/5)β=tan1(15)

Note that alpha in [0, 1)α[0,1) and beta in [0, 1)β[0,1), so alpha < tan^(-1) = pi/4α<tan1=π4 and beta < pi/4β<π4. Hence alpha+beta < pi/2α+β<π2 is in the range of tan^(-1)tan1

Then we find:

tan(alpha+beta) = (tan(alpha) + tan(beta))/(1-tan(alpha)tan(beta))tan(α+β)=tan(α)+tan(β)1tan(α)tan(β)

color(white)(tan(alpha+beta)) = (1/3 + 1/5)/(1-1/3*1/5)tan(α+β)=13+1511315

color(white)(tan(alpha+beta)) = (8/15)/(14/15)tan(α+β)=8151415

color(white)(tan(alpha+beta)) = 8/14tan(α+β)=814

color(white)(tan(alpha+beta)) = 4/7tan(α+β)=47

So:

tan^(-1)(1/3) + tan^(-1)(1/5) = alpha + beta = tan^(-1)(4/7)tan1(13)+tan1(15)=α+β=tan1(47)

Oct 20, 2016

See the proof below
tan^-1(4/7)=tan^-1(1/3)+tan^-1(1/5)tan1(47)=tan1(13)+tan1(15)

Explanation:

Let us have two angles a and b
Then tan(a+b)=sin(a+b)/cos(a+b)=( sinacosb+sinbcosa)/(cosacosb-sinasinb)tan(a+b)=sin(a+b)cos(a+b)=sinacosb+sinbcosacosacosbsinasinb
Divide throughout by cosacosbcosacosb
tan(a+b)=(((sinacosb)/(cosacosb))+((sinbcosa)/(cosacosb)))/((cosacosb)/(cosacosb)-(sinasinb)/(cosacosb)tan(a+b)=(sinacosbcosacosb)+(sinbcosacosacosb)cosacosbcosacosbsinasinbcosacosb
Simplifyng we get
tan(a+b)=(tana +tanb)/(1-tanatanb)tan(a+b)=tana+tanb1tanatanb
Here we have tana=1/3tana=13 and tanb=1/5tanb=15
so tan(a+b)=(1/3+1/5)/(1-(1/3*1/5))=(8/15)/(14/15)=8/14=4/7tan(a+b)=13+151(1315)=8151415=814=47
tan^-1(4/7)=tan^-1(1/3)+tan^-1(1/5)tan1(47)=tan1(13)+tan1(15)