How do you prove tan^-1(1/3)+tan^-1(1/5)=tan^-1(4/7)tan−1(13)+tan−1(15)=tan−1(47)?
2 Answers
See explanation...
Explanation:
For any
tan(alpha+beta) = (tan(alpha)+tan(beta)) / (1-tan(alpha)tan(beta))tan(α+β)=tan(α)+tan(β)1−tan(α)tan(β)
Let
Note that
Then we find:
tan(alpha+beta) = (tan(alpha) + tan(beta))/(1-tan(alpha)tan(beta))tan(α+β)=tan(α)+tan(β)1−tan(α)tan(β)
color(white)(tan(alpha+beta)) = (1/3 + 1/5)/(1-1/3*1/5)tan(α+β)=13+151−13⋅15
color(white)(tan(alpha+beta)) = (8/15)/(14/15)tan(α+β)=8151415
color(white)(tan(alpha+beta)) = 8/14tan(α+β)=814
color(white)(tan(alpha+beta)) = 4/7tan(α+β)=47
So:
tan^(-1)(1/3) + tan^(-1)(1/5) = alpha + beta = tan^(-1)(4/7)tan−1(13)+tan−1(15)=α+β=tan−1(47)
See the proof below
Explanation:
Let us have two angles a and b
Then
Divide throughout by
Simplifyng we get
Here we have
so