How do you prove tan p + cot p = 2 csc 2 ptanp+cotp=2csc2p?

1 Answer

This is true tan p+cot p=2 csc 2ptanp+cotp=2csc2p see the explanation

Explanation:

the given tan p+cot p=2 csc 2ptanp+cotp=2csc2p
start from left side
sin p/cos p+cos p/sin p=2 csc 2psinpcosp+cospsinp=2csc2p

sin p/cosp*sinp/sinp+cos p/sin p *cos p/cos p=2 csc 2psinpcospsinpsinp+cospsinpcospcosp=2csc2p

sin^2 p/(sin p cos p)+cos^2p/(sin p cos p)=2 csc 2psin2psinpcosp+cos2psinpcosp=2csc2p

from sin^2p+cos^2p=1sin2p+cos2p=1 equation becomes
(sin^2 p+cos^2p)/(sin p cos p)=2 csc 2psin2p+cos2psinpcosp=2csc2p

1/(sin p cos p)=2 csc 2p1sinpcosp=2csc2p

1/(sin p cos p)*2/2=2 csc 2p1sinpcosp22=2csc2p
2/(2sin p cos p)=2 csc 2p22sinpcosp=2csc2p

From sin 2p=2 sin p cos psin2p=2sinpcosp equation becomes
2/(sin 2p)=2 csc 2p2sin2p=2csc2p

2*(1/(sin 2p))=2 csc 2p2(1sin2p)=2csc2p
Take note: csc 2p=1/(sin 2p)csc2p=1sin2p
2 csc 2p=2 csc 2p2csc2p=2csc2p