How do you prove Tan[x+(pi/4)]=(1+tanx)/(1-tanx)?

2 Answers
May 28, 2016

as follows

Explanation:

Using formula

tan (A+B)= (tanA +tanB)/(1-tanAtanB) in the expression of LHS

LHS=tan(x+pi/4)=(tanx+tan(pi/4))/(1-tanx*tan(pi/4))=(1+tanx)/(1-tanx)=RHS

proved

May 28, 2016

see explanation

Explanation:

Using color(blue)" Addition formulae for tan"

color(red)(|bar(ul(color(white)(a/a)color(black)(tan(A±B)=(tanA±tanB)/(1∓tanAtanB))color(white)(a/a)|)))

here A = x and B = pi/4

tan[x+(pi/4)]=(tanx+tan(pi/4))/(1-tanxtan(pi/4))

now tan(pi/4)=1

rArrtan[x+(pi/4)]=(1+tanx)/(1-tanx)