How do you prove #Tan[x+(pi/4)]=(1+tanx)/(1-tanx)#?
2 Answers
May 28, 2016
as follows
Explanation:
Using formula
proved
May 28, 2016
see explanation
Explanation:
Using
#color(blue)" Addition formulae for tan"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(tan(A±B)=(tanA±tanB)/(1∓tanAtanB))color(white)(a/a)|)))# here A = x and B =
#pi/4#
#tan[x+(pi/4)]=(tanx+tan(pi/4))/(1-tanxtan(pi/4))# now
#tan(pi/4)=1#
#rArrtan[x+(pi/4)]=(1+tanx)/(1-tanx)#