How do you prove #Tan[x+(pi/4)]=(1+tanx)/(1-tanx)#?

2 Answers
May 28, 2016

as follows

Explanation:

Using formula

#tan (A+B)= (tanA +tanB)/(1-tanAtanB)# in the expression of LHS

#LHS=tan(x+pi/4)=(tanx+tan(pi/4))/(1-tanx*tan(pi/4))=(1+tanx)/(1-tanx)=RHS#

proved

May 28, 2016

see explanation

Explanation:

Using #color(blue)" Addition formulae for tan"#

#color(red)(|bar(ul(color(white)(a/a)color(black)(tan(A±B)=(tanA±tanB)/(1∓tanAtanB))color(white)(a/a)|)))#

here A = x and B = #pi/4#

#tan[x+(pi/4)]=(tanx+tan(pi/4))/(1-tanxtan(pi/4))#

now #tan(pi/4)=1#

#rArrtan[x+(pi/4)]=(1+tanx)/(1-tanx)#