How do you prove #tanx tan(1/2)x = sec x- 1#? Trigonometry Trigonometric Identities and Equations Double Angle Identities 1 Answer Narad T. Jul 13, 2018 Please see the proof below Explanation: Express #tanx# and #secx# in terms of #t=tan(x/2)# #tanx=(2t)/(1-t^2)# #cosx=(1-t^2)/(1+t^2)# #secx=1/cosx=(1+t^2)/(1-t^2)# The #LHS=tanx*tan(x/2)# #=(2t)/(1-t^2)*t# #=(2t^2)/(1-t^2)# #RHS=secx-1# #=(1+t^2)/(1-t^2)-1# #=(1+t^2-1+t^2)/(1-t^2)# #=(2t^2)/(1-t^2)# Therefore, #LHS=RHS# #QED# Answer link Related questions What are Double Angle Identities? How do you use a double angle identity to find the exact value of each expression? How do you use a double-angle identity to find the exact value of sin 120°? How do you use double angle identities to solve equations? How do you find all solutions for #sin 2x = cos x# for the interval #[0,2pi]#? How do you find all solutions for #4sinthetacostheta=sqrt(3)# for the interval #[0,2pi]#? How do you simplify #cosx(2sinx + cosx)-sin^2x#? If #tan x = 0.3#, then how do you find tan 2x? If #sin x= 5/3#, what is the sin 2x equal to? How do you prove #cos2A = 2cos^2 A - 1#? See all questions in Double Angle Identities Impact of this question 6197 views around the world You can reuse this answer Creative Commons License