How do you prove that the 4-sd approximation to the value of log_2(2+1/log_2(2+1/log_2(2+...))) is 1.428?

1 Answer
Jul 28, 2016

approx1.432

Explanation:

Calling

y = log_2(2+1/log_2(2+1/log_2(2+...))) we have

y = log_2(2+1/y)

Now, calling

y_{k+1} = log_2(2+1/y_k)

substituting

y_1 = 1.428 we obtain
y_2=1.433 and sucessively
y_3 =1.432 etc.

converging to

( (y_1 = 1.428000000000000000000000000000), (y_2 = 1.433109072200861922041781326700), (y_3 = 1.431774625761248698196936857130), (y_4 = 1.432122371909281044466411003668), (y_5 = 1.432031697667491831893471498920), ( cdots), (y_21 = 1.432050448448111801269533316372), (y_22 = 1.432050448448122681455174642906), (y_23 = 1.432050448448119794875310617499), (y_24 = 1.432050448448120683053730317624), (y_25 = 1.432050448448120238964520467562), (y_26 = 1.432050448448120238964520467562) )