How do you prove that the limit nen10cos(n10), for n from 0 to n, is 10.5053, nearly.?

1 Answer
Dec 3, 2016

See below.

Explanation:

ek10(cos(k10)+isin(k10))=ek10eik10=e(i+110)k

so

k=0ek10cos(k10)=Re(k=0e(i+110)k)

but e(i+110)k=ek10<1 so

k=0e(i+110)k=01ei+1101 so

11(ei+110)=122sinh[110]e110cos(110)ie110sin(110)1+e152e110cos(110)

and

Re11(ei+110)=122sinh[110]e110cos(110)=5.508336109787682