How do you rewrite the expression as a single logarithm and simplify ln(cos^2t)+ln(1+tan^2t)ln(cos2t)+ln(1+tan2t)?

2 Answers
Jan 13, 2017

ln(cos^2(t))+ln(1+tan^2(t)) = color(green)0ln(cos2(t))+ln(1+tan2(t))=0

Explanation:

Things to remember:

[1]color(white)("XXX")color(red)(tan=sin/cos)XXXtan=sincos

[2]color(white)("XXX")color(red)(ln(a)+ln(b)=ln(a * b)XXXln(a)+ln(b)=ln(ab)

[3]color(white)("XXX")color(red)(cos^2+sin^2=1XXXcos2+sin2=1

[4]color(white)("XXX")color(red)(ln(a)=k if e^k=a)

Therefore
ln(cos^2(t))+ln(1+tan^2(t))

color(white)("XXX")=ln(cos^2(t)+sin^2(t))

color(white)("XXX")=ln(1)

color(white)("XXX")=0

Jan 13, 2017

0.

Explanation:

We have to use the Rule : ln a+ln b=ln(ab), together with the

Identity : 1+tan^2t=sec^2t

The Exp. =lncos^2t+ln(1+tan^2t)

=lncos^2t+lnsec^2t

=ln{(cos^2t)(sec^2t)}

=ln 1

=0.