How do you show that lim_(r->oo) e^(ircostheta - rsintheta) = 0?

1 Answer
Sep 4, 2017

L = lim_(r->oo) e^(ircostheta - rsintheta)
\ \ \= lim_(r->oo) e^(ircostheta)e^(- rsintheta)

Using Euler's formula:

e^(ix) = cosx + isinx

We can write:

L = lim_(r->oo) e^(- rsintheta) { cos(rcostheta) + isin(rcostheta) }
\ \ \= lim_(r->oo) e^(- rsintheta) cos(rcostheta) + ilim_(r->oo) e^(- rsintheta) sin(rcostheta)

Intuitively we can see that the trig portions oscillate between +-1 but the exponential causes a dampening effect which approaches 0 as r rarr oo

Thus:

L= 0+0i
\ \ \= 0 QED