How do you show that lim_(r->oo) e^(ircostheta - rsintheta) = 0?
1 Answer
Sep 4, 2017
L = lim_(r->oo) e^(ircostheta - rsintheta)
\ \ \= lim_(r->oo) e^(ircostheta)e^(- rsintheta)
Using Euler's formula:
e^(ix) = cosx + isinx
We can write:
L = lim_(r->oo) e^(- rsintheta) { cos(rcostheta) + isin(rcostheta) }
\ \ \= lim_(r->oo) e^(- rsintheta) cos(rcostheta) + ilim_(r->oo) e^(- rsintheta) sin(rcostheta)
Intuitively we can see that the trig portions oscillate between
Thus:
L= 0+0i
\ \ \= 0 QED