How do you show the limit does not exist lim_(x->6)(|x-6|)/(x-6)

1 Answer
Mar 31, 2018

See explanation.

Explanation:

First if we write the function without the absolute value we get:

f(x)={(1;x>6),(-1;x<6):}

So if we calculate the left- and rightside limits we get:

Leftside limit:

lim_{x->6^-}(|x-6|)/(x-6)=lim_{x->6^-}(-1)=-1

Rightside limit:

lim_{x->6^+}(|x-6|)/(x-6)=lim_{x->6^+}(1)=1

The leftside limit is not equal to the rightside limit, so the limit does not exist.