How do you simplify -1/(cos2theta)+tan2theta1cos2θ+tan2θ using the double angle identities?

1 Answer
Jun 11, 2016

=((sintheta-costheta)/(costheta+sintheta))(sinθcosθcosθ+sinθ)

Explanation:

-1/(cos2theta)+tan2theta1cos2θ+tan2θ

=-1/(cos2theta)+(sin2theta)/(cos2theta=1cos2θ+sin2θcos2θ

=-(1-sin2theta)/(cos2theta)=1sin2θcos2θ

=-((1-sin2theta)/(cos2theta))=(1sin2θcos2θ)

=-((cos^2theta+sin^2theta-2sinthetacostheta)/(cos^2theta-sin^2theta))=(cos2θ+sin2θ2sinθcosθcos2θsin2θ)

=-((costheta-sintheta)cancel((costheta-sintheta)))/((costheta+sintheta)cancel((costheta-sintheta)))

=-((costheta-sintheta)/(costheta+sintheta))

=((sintheta-costheta)/(costheta+sintheta))