How do you simplify #(1/h^-2)^-1*h^3#?

2 Answers

#h#

Explanation:

Given that

#(1/h^{-2})^{-1}\cdot h^3#

#=(h^{-2})^{1}\cdot h^3#

#=h^{-2}\cdot h^3#

#=h^{-2+3}#

#=h#

Jul 9, 2018

#h#

Explanation:

Given: #(1/h^-2)^-1 * h^3 #

Use the exponent rules: #1/x^-n = x^n; " " x^-m = 1/x^m#

# (x^m)^n = x^(m*n); " "x^nx^m = x^(n+m)#

#(1/h^-2)^-1 * h^3 = (h^2)^-1 * h^3 = h^-2 * h^3 #

#h^(-2 + 3) = h^1 = h#