How do you simplify #(12a^-9b^-4)/( 9a^2b^6)#? Algebra Exponents and Exponential Functions Exponential Properties Involving Quotients 1 Answer Don't Memorise Mar 16, 2016 #=(4 a^-11 b^-10)/3# Explanation: #(12a^-9b^-4)/(9a^2b^6)# #=(12/9) * ((a^-9b^-4)/(a^2b^6))# #=(cancel12/cancel9) * ((a^-9b^-4)/(a^2b^6))# #=(4/3) * (a^-9 / a^2 ) * ((b^-4)/(b^6))# as per property: #color(blue)(a^m/a^n = a ^(m-n)# #=(4/3) * (a^(-9 -2) ) * (b^(-4 -6))# #=(4/3) * ( a^-11) * (b^-10)# #=4/3 a^-11 b^-10# #=(4 a^-11 b^-10)/3# Answer link Related questions What is the quotient of powers property? How do you simplify expressions using the quotient rule? What is the power of a quotient property? How do you evaluate the expression #(2^2/3^3)^3#? How do you simplify the expression #\frac{a^5b^4}{a^3b^2}#? How do you simplify #((a^3b^4)/(a^2b))^3# using the exponential properties? How do you simplify #\frac{(3ab)^2(4a^3b^4)^3}{(6a^2b)^4}#? Which exponential property do you use first to simplify #\frac{(2a^2bc^2)(6abc^3)}{4ab^2c}#? How do you simplify #(x^5y^8)/(x^4y^2)#? How do you simplify #[(2^3 *-3^2) / (2^4 * 3^-2)]^2#? See all questions in Exponential Properties Involving Quotients Impact of this question 1325 views around the world You can reuse this answer Creative Commons License