How do you simplify #(2^-1 cd^-4) (8c^-3 d^4)#? Algebra Exponents and Exponential Functions Exponential Properties Involving Quotients 1 Answer Don't Memorise Jun 7, 2015 #(2^-1 cd^-4) (8c^-3 d^4)# #=(2^-1 cd^-4) (2^3c^-3 d^4)# (#8 = 2^3#) Note: #color(blue)(a^m.a^n = a^(m+n)# Applying the above to the exponents of #2#, #c# and #d#: #=color(red)(2^((-1 +3)))color(blue)( c^((1-3))color(green)(d^((-4+4))# #=color(red)(2^((2)))color(blue)( c^((-2))color(green)(d^((0))# Note: #color(blue)(a^0 = 1# #=4.c^(-2).1# #=4c^-2# Answer link Related questions What is the quotient of powers property? How do you simplify expressions using the quotient rule? What is the power of a quotient property? How do you evaluate the expression #(2^2/3^3)^3#? How do you simplify the expression #\frac{a^5b^4}{a^3b^2}#? How do you simplify #((a^3b^4)/(a^2b))^3# using the exponential properties? How do you simplify #\frac{(3ab)^2(4a^3b^4)^3}{(6a^2b)^4}#? Which exponential property do you use first to simplify #\frac{(2a^2bc^2)(6abc^3)}{4ab^2c}#? How do you simplify #(x^5y^8)/(x^4y^2)#? How do you simplify #[(2^3 *-3^2) / (2^4 * 3^-2)]^2#? See all questions in Exponential Properties Involving Quotients Impact of this question 1598 views around the world You can reuse this answer Creative Commons License