How do you simplify 2sin35cos35? Trigonometry Trigonometric Identities and Equations Double Angle Identities 1 Answer George C. May 12, 2015 Use eiθ=cosθ+isinθ cos2θ+isin2θ =e2iθ =eiθeiθ =(cosθ+isinθ)(cosθ+isinθ) =(cos2θ−sin2θ)+i(2cosθsinθ) Looking at the coefficients of i, we get sin(2θ)=2cosθsinθ=2sinθcosθ So 2sin35ocos35o=sin(2⋅35o)=sin70o Answer link Related questions What are Double Angle Identities? How do you use a double angle identity to find the exact value of each expression? How do you use a double-angle identity to find the exact value of sin 120°? How do you use double angle identities to solve equations? How do you find all solutions for sin2x=cosx for the interval [0,2π]? How do you find all solutions for 4sinθcosθ=√3 for the interval [0,2π]? How do you simplify cosx(2sinx+cosx)−sin2x? If tanx=0.3, then how do you find tan 2x? If sinx=53, what is the sin 2x equal to? How do you prove cos2A=2cos2A−1? See all questions in Double Angle Identities Impact of this question 6740 views around the world You can reuse this answer Creative Commons License