How do you simplify #(3a^2b^4+9a^3b-6a^5b)/(3a^2b)# and what are the ecluded values of the variables?

1 Answer
Nov 5, 2017

See a solution process below:

Explanation:

First, the Excluded Values can be found by equating the denominator to #0# and then solve each variable for #0#:

#2a^2b = 0#

#a^2 = 0# therefore #a = 0#

#b = 0#

The Excluded values are #a = 0# and/or #b = 0#

To simplify the expression, rewrite the expression as:

#(3a^2b^4)/(3a^2b) + (9a^3b)/(3a^2b) - (6a^5b)/(3a^2b) =>#

#(color(purple)(cancel(color(black)(3)))color(red)(cancel(color(black)(a^2)))b^4)/(color(purple)(cancel(color(black)(3)))color(red)(cancel(color(black)(a^2)))b) + (color(purple)(cancel(color(black)(9)))3a^3color(blue)(cancel(color(black)(b))))/(color(purple)(cancel(color(black)(3)))a^2color(blue)(cancel(color(black)(b)))) - (color(purple)(cancel(color(black)(6)))2a^5color(blue)(cancel(color(black)(b))))/(color(purple)(cancel(color(black)(3)))a^2color(blue)(cancel(color(black)(b)))) =>#

#b^4/b + (3a^3)/a^2 - (2a^5)/a^2#

Next, use these rules for exponents to simplify the remaining terms:

#a = a^color(blue)(1)# and #x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))# and #a^color(red)(1) = a#

#b^color(red)(4)/b^color(blue)(1) + (3a^color(red)(3))/a^color(blue)(2) - (2a^color(red)(5))/a^color(blue)(2) =>#

#b^(color(red)(4)-color(blue)(1)) + 3a^(color(red)(3)-color(blue)(2)) - 2a^(color(red)(5)-color(blue)(2)) =>#

#b^3 + 3a^1 - 2a^3 =>#

#b^3 + 3a - 2a^3 =>#