How do you simplify 3cos8θ6sin4θ to trigonometric functions of a unit θ?

1 Answer
Nov 25, 2016

=3(2(2(2cos2θ1)21)21)12sinθcosθ(2cos2θ1)

Explanation:

3cos8θ6sin4θ

=3(2cos24θ1)6sin2θcos2θ

=3(2(2cos22θ1)21)12sinθcosθ(2cos2θ1)

=3(2(2(2cos2θ1)21)21)12sinθcosθ(2cos2θ1)

Also, Comparison of real and imaginary parts in

cosnθ+isinnθ=(cosθ+isinθ)n,n=4and8 can

be used as an alternative method. This is good, when m and n are

large, for expressions of the form acosmθ+bsinnθ).