How do you simplify #((3x^-2 y^3 )/(2xy))^-2#?
1 Answer
Oct 11, 2015
Explanation:
Try to simply the expression
#(3x^(-2)y^3)/(2xy)#
first, then worry about the
Notice that you can write
#(3x^(-2)y^3)/(2xy) = (3 * y^3)/(2xy) * 1/x^2 = (3y^2)/(2x^3)#
The original expression now becomes
#((3y^2)/(2x^3))^(-2) = ((2x^3)/(3y^2))^2 = (2^2 * x^(3 * 2))/(3^2 * y^(2 * 2)) = color(green)((4x^6)/(9y^4))#