How do you simplify # (3x + 4)(2x + 3)#? Algebra Polynomials and Factoring Multiplication of Polynomials by Binomials 1 Answer Shwetank Mauria Jul 22, 2016 #(3x+4)(2x+3)=6x^2+17x+12# Explanation: #(3x+4)(2x+3)# = #(3x+4)xx2x+(3x+4)xx3# = #2x xx(3x+4)+3xx(3x+4)# = #6x^2+8x+9x+12# = #6x^2+17x+12# Answer link Related questions What is FOIL? How do you use the distributive property when you multiply polynomials? How do you multiply #(x-2)(x+3)#? How do you simplify #(-4xy)(2x^4 yz^3 -y^4 z^9)#? How do you multiply #(3m+1)(m-4)(m+5)#? How do you find the volume of a prism if the width is x, height is #2x-1# and the length if #3x+4#? How do you multiply #(a^2+2)(3a^2-4)#? How do you simplify #(x – 8)(x + 5)#? How do you simplify #(p-1)^2#? How do you simplify #(3x+2y)^2#? See all questions in Multiplication of Polynomials by Binomials Impact of this question 13064 views around the world You can reuse this answer Creative Commons License