How do you simplify #4 div 2/3#?

1 Answer
May 9, 2017

See a solution process below:

Explanation:

First, we can rewrite this expression as: #4/1 -: 2/3 => (4/1)/(2/3)#

We can again rewrite this expression, now using this rule for dividing fractions:

#(color(red)(a)/color(blue)(b))/(color(green)(c)/color(purple)(d)) = (color(red)(a) xx color(purple)(d))/(color(blue)(b) xx color(green)(c))#

#(color(red)(4)/color(blue)(1))/(color(green)(2)/color(purple)(3)) => (color(red)(4) xx color(purple)(3))/(color(blue)(1) xx color(green)(2)) => 12/2 => 6#