How do you simplify #45-13 4/11#?

2 Answers
Nov 12, 2016

#\frac(348)(11)#

Explanation:

Conversions:

Convert #45# to eleventh fractional form:
#\color{red}{45=\frac(45\times11)(11)=\frac(495)(11)}#
Convert #13\frac(4)(11)# to improper fraction form:
#\color{blue}{13\frac(4)(11)=\frac((13\times11)+4)(11)=\frac(143+4)(11)=\frac(147)(11)}#

Input in original equation:

#\color{red}{\frac(495)(11)}-\color{blue}{\frac(147)(11)}=\frac{495-147}{11}#
#=\frac(348)(11)#

Nov 12, 2016

#31 7/11#

Explanation:

Subtracting a fraction from a whole number is generally quite quick and easy if you remember that a whole number can be written as a fraction with an equal numerator and denominator.

#1 = 8/8 = 15/15 = 23/23 ....#

In #45 -13 4/11" "# subtract the 13 as a whole number first:

#color(red)(45-13) 4/11#

#=color(red)(32) - 4/11#

#= 31+11/11 -4/11#

#=31 7/11#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Background examples

Consider: #color(blue)(7)-1/2 rarr color(blue)(6+2/2)-1/2 = 6 1/2#

#color(blue)(11) - 3/4 rarr color(blue)(10 +4/4) -3/4 = 10 1/4#

#color(red)(5 - 1) 2/3 = color(red)(4)- 2/3 = 3 2/3#