How do you simplify (-4cosxsinx+2cos2x)^2+(2cos2x+4sinxcosx)^2(4cosxsinx+2cos2x)2+(2cos2x+4sinxcosx)2?

1 Answer
Nov 20, 2016

(-4cosxsinx+2cos2x)^2+(2cos2x+4cosxsinx)^2=8(4cosxsinx+2cos2x)2+(2cos2x+4cosxsinx)2=8

Explanation:

To solve (-4cosxsinx+2cos2x)^2+(2cos2x+4cosxsinx)^2(4cosxsinx+2cos2x)2+(2cos2x+4cosxsinx)2,

Let us assume 2sin2x=4cosxsinx=a2sin2x=4cosxsinx=a and 2cos2x=b2cos2x=b, then above can be written as

(b-a)^2+(b+a)^2(ba)2+(b+a)2 (note -2ab2ab and +2ab+2ab cancel out)

= 2b^2+2a^22b2+2a2

= 2(2sin2x)^2+2(2cos2x)^22(2sin2x)2+2(2cos2x)2

= 8sin^2 2x+8cos^2 2x8sin22x+8cos22x

= 88