How do you simplify #(4x^4y^-3)^-2# and write it using only positive exponents?
2 Answers
See full simplification process below
Explanation:
First, we we use this rule for exponents to start the simplification:
Now, we will use this rule for exponents to finalize the simplification leaving only terms with positive exponents:
Explanation:
Using the
#color(blue)"laws of exponents"#
#color(red)(bar(ul(|color(white)(2/2)color(black)((a^mb^n)^p=a^(mp)b^(np))color(white)(2/2)|)))#
This can be extended to more than 2 products.
#rArr(4^1x^4y^(-3))^(-2)=4^((1xx-2))x^((4xx-2))y^((-3xx-2))#
#=4^(-2)x^(-8)y^6#
#color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(a^-mhArr1/a^m)color(white)(2/2)|)))#
#rArr4^(-2)x^(-8)y^6=1/4^2xx1/x^8xxy^6/1#
#=(1xx1xxy^6)/(16xxx^8xx1)=(y^6)/(16x^8)#