How do you simplify (-5^5y^4z^-5)^6/(2^-2y^-2z^3)(55y4z5)622y2z3?

1 Answer
Mar 19, 2018

(2^2*5^30y^26)/z^3322530y26z33

Answer with positive exponents.

Explanation:

Start with

(-5^5 y^4 z^-5)^6 /(2^-2 y^-2 z^3)(55y4z5)622y2z3

To avoid confusion, rewrite as

((-1)*5^5 y^4 z^-5)^6 /(2^-2 y^-2 z^3)((1)55y4z5)622y2z3

Now apply exponent rule (a^n)^m=a^(nm)(an)m=anm

((-1)^6*5^30 y^24 z^-30) /(2^-2 y^-2 z^3)(1)6530y24z3022y2z3

Note that (-1)^6=1(1)6=1 because 6 is even so our expression is now

(5^30 y^24 z^-30) /(2^-2 y^-2 z^3)530y24z3022y2z3

Using exponent laws we know that 1/2^-2= 2^2/1122=221

(2^2*5^30 y^24 z^-30) /(y^-2 z^3)22530y24z30y2z3

Exponent laws also tell us that y^24/y^-2=y^(24--2)=y^(24+2)=y^26y24y2=y242=y24+2=y26 so we can write

(2^2*5^30 y^26 z^-30) /z^322530y26z30z3

Finally z^-30/z^3=1/z^(3--30)=1/z^(3+30)=1/z^33z30z3=1z330=1z3+30=1z33 so the answer is

(2^2*5^30 y^26) /z^3322530y26z33