How do you simplify #6 div 1/2#?

1 Answer
Apr 29, 2017

See the entire solution process below:

Explanation:

First, rewrite this expression as:

#6/(1/2)# which can again be rewritten as: #(6/1)/(1/2)#

We can now use this rule for dividing fractions:

#(color(red)(a)/color(blue)(b))/(color(green)(c)/color(purple)(d)) = (color(red)(a) xx color(purple)(d))/(color(blue)(b) xx color(green)(c))#

#(color(red)(6)/color(blue)(1))/(color(green)(1)/color(purple)(2)) = (color(red)(6) xx color(purple)(2))/(color(blue)(1) xx color(green)(1)) = 12/1 = 12#