How do you simplify and divide #(2c^3-3c^2+3c-4)div(c-2)#?
1 Answer
Nov 2, 2017
Explanation:
#"one way is to use the divisor as a factor in the numerator"#
#"consider the numerator"#
#color(red)(2c^2)(c-2)color(magenta)(+4c^2)-3c^2+3c-4#
#=color(red)(2c^2)(c-2)color(red)(+c)(c-2)color(magenta)(+2c)+3c-4#
#=color(red)(2c^2)(c-2)color(red)(+c)(c-2)color(red)(+5)(c-2)color(magenta)(+10)-4#
#=color(red)(2c^2)(c-2)color(red)(+c)(c-2)color(red)(+5)(c-2)+6#
#"quotient "=color(red)(2c^2+c+5)," remainder "=6#
#rArr(2c^3-3c^2+3c-4)/(c-2)=2c^2+c+5+6/(c-2)#