How do you simplify and divide #(2c^3-3c^2+3c-4)div(c-2)#?

1 Answer
Nov 2, 2017

#2c^2+c+5+6/(c-2)#

Explanation:

#"one way is to use the divisor as a factor in the numerator"#

#"consider the numerator"#

#color(red)(2c^2)(c-2)color(magenta)(+4c^2)-3c^2+3c-4#

#=color(red)(2c^2)(c-2)color(red)(+c)(c-2)color(magenta)(+2c)+3c-4#

#=color(red)(2c^2)(c-2)color(red)(+c)(c-2)color(red)(+5)(c-2)color(magenta)(+10)-4#

#=color(red)(2c^2)(c-2)color(red)(+c)(c-2)color(red)(+5)(c-2)+6#

#"quotient "=color(red)(2c^2+c+5)," remainder "=6#

#rArr(2c^3-3c^2+3c-4)/(c-2)=2c^2+c+5+6/(c-2)#