How do you simplify Cos(arccos(2x) + arcsin(x))cos(arccos(2x)+arcsin(x))?

2 Answers
Jul 24, 2016

cos 3x

Explanation:

arccos 2x --> 2x
arcsin x --> sin x
cos (arccos 2x + arcsin x) = cos (2x + x) = cos 3x

Jul 24, 2016

+-2 x sqrt (1 - x^2 ) +- x sqrt(1 - 4 x^2 ), -1/2<=x<=1/2±2x1x2±x14x2,12x12

Explanation:

arc cos 2x is the angle whose cosine is 2x.

Let a = arc cos ( 2 x )a=arccos(2x).

Then, cos a = 2 x in [-1, 1 ] and sin a = +- sqrt (1 - 2 x^2 )cosa=2x[1,1]andsina=±12x2

Note that x in [-1/2. 1/2]x[12.12].

Prefix negative sign for principal value a > pi/4a>π4 (when x > 0)..

Let b = arc sin xb=arcsinx.

Then, sin b = x and cos b = +- sqrt (1 - x^2 )sinb=xandcosb=±1x2.

Prefix negative sign for principal value b < 0b<0 (when x < 0).

Now, the given expression is

cos ( a + b )cos(a+b)

= cos a cos b - sin a sin b=cosacosbsinasinb

=+-2 x sqrt( 1 - x^2) +- x sqrt ( 1 - 4 x^2 )=±2x1x2±x14x2