How do you simplify cos(arcsinx - arctan2x)cos(arcsinxarctan2x)?

1 Answer
Jul 14, 2016

Reqd. Value={sqrt(1-x^2)+2x^2}/sqrt(1+4x^2)=1x2+2x21+4x2

Explanation:

Let arcsinx=A, &, arctan2x=Barcsinx=A,&,arctan2x=B, so that, sinA=x, &, tanB=2x, A in [-pi/2,pi/2], B in (-pi/2,pi/2)sinA=x,&,tanB=2x,A[π2,π2],B(π2,π2)

We will consider the case A, B in [0,pi/2]A,B[0,π2], so that all trigonometric ratios will be +ve+ve. The other case can be dealt with similarly.

Now reqd. value =cos(A-B)=cosAcosB+sinAsinB.......(I)

sinA=x rArr cosA =sqrt(1-x^2)

tanB=2x rArr sec^2B=1+tan^2B=1+4x^2rArr secB=sqrt(1+4x^2) rArr cosB=1/sqrt(1+4x^2)

tanB=2xrArrcotB=1/(2x)rArrcsc^2B=1+cot^2B=1+1/(4x^2)=(4x^2+1)/(4x^2)rArrcscB=sqrt(1+4x^2)/(2x)rArrsinB=(2x)/sqrt(1+4x^2)

Sub.ing all these in (I), we have,

The Reqd. Value=sqrt(1-x^2)/sqrt(1+4x^2)+(2x^2)/sqrt(1+4x^2)

={sqrt(1-x^2)+2x^2}/sqrt(1+4x^2)

Hope, this is Helpful! Enjoy Maths. , &, yes, don't forget to consider

the case A,B in [-pi/2,0] !