How do you simplify #cos(pi/2-theta)#?

1 Answer
May 1, 2016

#sintheta#

Explanation:

This is a well used trig. relation along with #sin(pi/2-theta)#

that is : #cos(pi/2-theta)=sintheta" and " sin(pi/2-theta)=costheta#

Basically sin(angle) = cos(complement)

and cos(angle) = sin(complement)

example: #sin60^@=cos30^@ "etc"#

However, we can show the above question using the appropriate#color(blue)" Addition formula "#

#color(red)(|bar(ul(color(white)(a/a)color(black)( cos(A ± B)=cosAcosB ∓ sinAsinB)color(white)(a/a)|)))#

#rArrcos(pi/2-theta)=cos(pi/2)costheta+sin(pi/2)sintheta#

now #cos(pi/2)=0" and " sin(pi/2)=1 #

#rArrcos(pi/2-theta)=0xxcostheta+1xxsintheta=sintheta#