How do you simplify cos(pi/2-theta)?

1 Answer
May 1, 2016

sintheta

Explanation:

This is a well used trig. relation along with sin(pi/2-theta)

that is : cos(pi/2-theta)=sintheta" and " sin(pi/2-theta)=costheta

Basically sin(angle) = cos(complement)

and cos(angle) = sin(complement)

example: sin60^@=cos30^@ "etc"

However, we can show the above question using the appropriatecolor(blue)" Addition formula "

color(red)(|bar(ul(color(white)(a/a)color(black)( cos(A ± B)=cosAcosB ∓ sinAsinB)color(white)(a/a)|)))

rArrcos(pi/2-theta)=cos(pi/2)costheta+sin(pi/2)sintheta

now cos(pi/2)=0" and " sin(pi/2)=1

rArrcos(pi/2-theta)=0xxcostheta+1xxsintheta=sintheta