How do you simplify cos(pi/2-theta)?
1 Answer
May 1, 2016
Explanation:
This is a well used trig. relation along with
sin(pi/2-theta) that is :
cos(pi/2-theta)=sintheta" and " sin(pi/2-theta)=costheta Basically sin(angle) = cos(complement)
and cos(angle) = sin(complement)
example:
sin60^@=cos30^@ "etc" However, we can show the above question using the appropriate
color(blue)" Addition formula "
color(red)(|bar(ul(color(white)(a/a)color(black)( cos(A ± B)=cosAcosB ∓ sinAsinB)color(white)(a/a)|)))
rArrcos(pi/2-theta)=cos(pi/2)costheta+sin(pi/2)sintheta now
cos(pi/2)=0" and " sin(pi/2)=1
rArrcos(pi/2-theta)=0xxcostheta+1xxsintheta=sintheta