How do you simplify #cos(pi/2-theta)#?
1 Answer
May 1, 2016
Explanation:
This is a well used trig. relation along with
#sin(pi/2-theta)# that is :
#cos(pi/2-theta)=sintheta" and " sin(pi/2-theta)=costheta# Basically sin(angle) = cos(complement)
and cos(angle) = sin(complement)
example:
#sin60^@=cos30^@ "etc"# However, we can show the above question using the appropriate
#color(blue)" Addition formula "#
#color(red)(|bar(ul(color(white)(a/a)color(black)( cos(A ± B)=cosAcosB ∓ sinAsinB)color(white)(a/a)|)))#
#rArrcos(pi/2-theta)=cos(pi/2)costheta+sin(pi/2)sintheta# now
#cos(pi/2)=0" and " sin(pi/2)=1 #
#rArrcos(pi/2-theta)=0xxcostheta+1xxsintheta=sintheta#