How do you simplify #Cos(sin^-1 u + cos^-1 v)#?
1 Answer
Apr 13, 2016
Explanation:
Making
And using the formula
#cos(alpha+beta)=cosalpha*cosbeta-sinalpha*sinbeta#
We get
#cos(alpha+beta)=sqrt(1-sin^2alpha)*cosbeta-sinalpha*sqrt(1-cos^2beta)#
#=sqrt(1-u^2)*v-u*sqrt(1-v^2)#
#=v*sqrt(1-u^2)-u*sqrt(1-v^2)#