How do you simplify Cos(sin^-1 u + cos^-1 v)?

1 Answer
Apr 13, 2016

v*sqrt(1-u^2)-u*sqrt(1-v^2)

Explanation:

cos(sin^(-1)u+cos^(-1)v)=

Making
sin^(-1)u=alpha => sin alpha=u
cos^(-1)v=beta => cos beta=v

And using the formula

cos(alpha+beta)=cosalpha*cosbeta-sinalpha*sinbeta

We get

cos(alpha+beta)=sqrt(1-sin^2alpha)*cosbeta-sinalpha*sqrt(1-cos^2beta)
=sqrt(1-u^2)*v-u*sqrt(1-v^2)
=v*sqrt(1-u^2)-u*sqrt(1-v^2)