How do you simplify Cos [tan^-1(-1) + cos^-1(-4/5)]cos[tan1(1)+cos1(45)]?

2 Answers
Mar 20, 2017

see below

Explanation:

Use the property color(blue)(cos(A+B)=cosAcosB-sinAsinBcos(A+B)=cosAcosBsinAsinB

For the color(red)(tan^-1 (-1)tan1(1) we know that our triangle is in quadrant 4. Since color(red)(tan^-1 xtan1x is restricted to quadrants 1 and 4 and since the argument is negative it means our triangle has to be in quadrant 4.

Hence, the side color(red)(opposite opposite to color(red)(angle theta = -1θ=1 and color(red)(adjacentadjacent to color(red)(angle theta = 1θ=1 and so the color(red)(hypote n use=sqrt2hypotenuse=2. In this case color(red)(theta=45^@θ=45 but we don't need to know the value of color(red)(thetaθ. Therefore,

color(blue)(cos(tan^-1(-1))=cos theta=(adjacent)/(hypote n use)=1/sqrt2 = sqrt2/2cos(tan1(1))=cosθ=adjacenthypotenuse=12=22

color(blue)(sin(tan^-1(-1))=sin theta=(opposite)/(hypote n use)=-1/sqrt2 = -sqrt2/2sin(tan1(1))=sinθ=oppositehypotenuse=12=22

For the color(magenta)(cos^-1(-4/5)cos1(45)the triangle is in quadrant 2 since color(magenta)(cos^-1 x)cos1xis restricted to quadrants 1 and 2 and since the argument is negative the triangle has to be in quadrant 2.

Hence, color(magenta)(adjacent adjacent to color(magenta)(angle theta=-4θ=4 and color(magenta)(hypote n use = 5hypotenuse=5. Therefore by using pythagorean theorem the color(magenta)(oppositeopposite to color(magenta)(angle theta=3θ=3

color(blue)((cos(cos^-1(-4/5))=cos theta = (adjacent)/(hypote n use)=-4/5(cos(cos1(45))=cosθ=adjacenthypotenuse=45

color(blue)(sin(cos^-1(-4/5)=sin theta=(opposite)/(hypote n use) = 3/5sin(cos1(45)=sinθ=oppositehypotenuse=35

Then using the property color(orange)(cos(A+B)=cosAcosB-sinAsinBcos(A+B)=cosAcosBsinAsinB where color(orange)(A=tan^-1 (-1) and B=cos^-1(-4/5)A=tan1(1)andB=cos1(45) we have

cos(tan^-1(-1)+cos^-1(-4/5))=color(blue)(cos(tan^-1(-1))cos(cos^-1(-4/5))-sin(tan^-1(-1)) sin(cos^-1(-4/5))cos(tan1(1)+cos1(45))=cos(tan1(1))cos(cos1(45))sin(tan1(1))sin(cos1(45))

color(blue)(=sqrt2/2 * (-4)/5-(-sqrt2)/2*3/5=22452235

color(blue)(=(-4sqrt2)/10)+color(blue)((3sqrt2)/10=4210+3210

color(blue)( :. = -sqrt2/10

Mar 21, 2017

LHS=cos(tan^-1(-1)+cos^-1(-4/5))

=cos(tan^-1tan(-pi/4)+cos^-1(-4/5))

=cos((-pi/4)+cos^-1(-4/5))

=cos(-pi/4)cos(cos^-1(-4/5))-sin(-pi/4)sin(cos^-1(-4/5))

=cos(pi/4)(-4/5))+sin(pi/4)sin(sin^-1sqrt(1-(-4/5)^2))

=1/sqrt2xx(-4/5)+1/sqrt2xx3/5

=(-4+3)/(5sqrt2)

=-1/(5sqrt2)=-sqrt2/10