Use the property color(blue)(cos(A+B)=cosAcosB-sinAsinBcos(A+B)=cosAcosB−sinAsinB
For the color(red)(tan^-1 (-1)tan−1(−1) we know that our triangle is in quadrant 4. Since color(red)(tan^-1 xtan−1x is restricted to quadrants 1 and 4 and since the argument is negative it means our triangle has to be in quadrant 4.
Hence, the side color(red)(opposite opposite to color(red)(angle theta = -1∠θ=−1 and color(red)(adjacentadjacent to color(red)(angle theta = 1∠θ=1 and so the color(red)(hypote n use=sqrt2hypotenuse=√2. In this case color(red)(theta=45^@θ=45∘ but we don't need to know the value of color(red)(thetaθ. Therefore,
color(blue)(cos(tan^-1(-1))=cos theta=(adjacent)/(hypote n use)=1/sqrt2 = sqrt2/2cos(tan−1(−1))=cosθ=adjacenthypotenuse=1√2=√22
color(blue)(sin(tan^-1(-1))=sin theta=(opposite)/(hypote n use)=-1/sqrt2 = -sqrt2/2sin(tan−1(−1))=sinθ=oppositehypotenuse=−1√2=−√22
For the color(magenta)(cos^-1(-4/5)cos−1(−45)the triangle is in quadrant 2 since color(magenta)(cos^-1 x)cos−1xis restricted to quadrants 1 and 2 and since the argument is negative the triangle has to be in quadrant 2.
Hence, color(magenta)(adjacent adjacent to color(magenta)(angle theta=-4∠θ=−4 and color(magenta)(hypote n use = 5hypotenuse=5. Therefore by using pythagorean theorem the color(magenta)(oppositeopposite to color(magenta)(angle theta=3∠θ=3
color(blue)((cos(cos^-1(-4/5))=cos theta = (adjacent)/(hypote n use)=-4/5(cos(cos−1(−45))=cosθ=adjacenthypotenuse=−45
color(blue)(sin(cos^-1(-4/5)=sin theta=(opposite)/(hypote n use) = 3/5sin(cos−1(−45)=sinθ=oppositehypotenuse=35
Then using the property color(orange)(cos(A+B)=cosAcosB-sinAsinBcos(A+B)=cosAcosB−sinAsinB where color(orange)(A=tan^-1 (-1) and B=cos^-1(-4/5)A=tan−1(−1)andB=cos−1(−45) we have
cos(tan^-1(-1)+cos^-1(-4/5))=color(blue)(cos(tan^-1(-1))cos(cos^-1(-4/5))-sin(tan^-1(-1)) sin(cos^-1(-4/5))cos(tan−1(−1)+cos−1(−45))=cos(tan−1(−1))cos(cos−1(−45))−sin(tan−1(−1))sin(cos−1(−45))
color(blue)(=sqrt2/2 * (-4)/5-(-sqrt2)/2*3/5=√22⋅−45−−√22⋅35
color(blue)(=(-4sqrt2)/10)+color(blue)((3sqrt2)/10=−4√210+3√210
color(blue)( :. = -sqrt2/10