How do you simplify cos2theta -tan2theta using the double angle identities?

1 Answer
Jan 2, 2017

cos2theta-tan2theta=(1-tan^2theta)/(1+tan^2theta)-(2tantheta)/(1-tan^2theta)

Explanation:

cos2theta-tan2theta,

now using tan2theta=(2tantheta)/(1-tan^2theta) and cos2theta=(cos^2theta-sin^2theta), the above is equal to

= (cos^2theta-sin^2theta)/(cos^2theta-sin^2theta)-(2tantheta)/(1-tan^2theta)

Note that we have used cos^2theta-sin^2theta=1

The above can be further simplified as

(1-sin^2theta/cos^2theta)/(1+sin^2theta/cos^2theta)-(2tantheta)/(1-tan^2theta)

or (1-tan^2theta)/(1+tan^2theta)-(2tantheta)/(1-tan^2theta)