How do you simplify cos4theta-3tan2theta+sin2thetacos4θ3tan2θ+sin2θ to trigonometric functions of a unit thetaθ?

1 Answer
Jul 21, 2016

cos4theta-3tan2theta+sin2thetacos4θ3tan2θ+sin2θ

=1-2sin^2 2theta-3tan2theta+sin2theta=12sin22θ3tan2θ+sin2θ

=1-2sin^2 2theta +sin2theta-3tan2theta=12sin22θ+sin2θ3tan2θ

=1+2sin2theta-sin2theta-2sin^2 2theta-3tan2theta=1+2sin2θsin2θ2sin22θ3tan2θ

=(1+2sin2theta)-sin2theta(1+2sin2theta)-3tan2theta=(1+2sin2θ)sin2θ(1+2sin2θ)3tan2θ

=(1+2sin2theta)(1-sin2theta)-3tan2theta=(1+2sin2θ)(1sin2θ)3tan2θ

=(1+(4x)/(1+x^2))(1-(2x)/(2+x^2))-(6x)/(1-x^2)=(1+4x1+x2)(12x2+x2)6x1x2

color(red)("where " x=tantheta)where x=tanθ