cos4theta-3tan2theta+sin2thetacos4θ−3tan2θ+sin2θ
=1-2sin^2 2theta-3tan2theta+sin2theta=1−2sin22θ−3tan2θ+sin2θ
=1-2sin^2 2theta +sin2theta-3tan2theta=1−2sin22θ+sin2θ−3tan2θ
=1+2sin2theta-sin2theta-2sin^2 2theta-3tan2theta=1+2sin2θ−sin2θ−2sin22θ−3tan2θ
=(1+2sin2theta)-sin2theta(1+2sin2theta)-3tan2theta=(1+2sin2θ)−sin2θ(1+2sin2θ)−3tan2θ
=(1+2sin2theta)(1-sin2theta)-3tan2theta=(1+2sin2θ)(1−sin2θ)−3tan2θ
=(1+(4x)/(1+x^2))(1-(2x)/(2+x^2))-(6x)/(1-x^2)=(1+4x1+x2)(1−2x2+x2)−6x1−x2
color(red)("where " x=tantheta)where x=tanθ