How do you simplify #cos8theta-5tan2theta# to trigonometric functions of a unit #theta#?

1 Answer

#cos 8theta-5 tan 2theta=#
#{2[2(2 cos^2 theta-1)^2-1]^2-1}-(10tan theta)/(1-tan^2 theta)#

Explanation:

Use double angle formulas for tangent

#tan 2A= (2 tan A)/(1-tan^2 A)#

Use half-angle formulas for cosine

#cos (A/2)=sqrt((1+cos A)/2#

so that

#cos A=2*cos^2 (A/2)-1#

We can now write

#cos 8theta=2 cos^2 4theta-1#

#cos 4theta=2 cos^2 2theta-1#

#cos 2theta=2 cos^2 theta-1#

It follows that

#cos 8theta-5 tan 2theta=#
#{2[2(2 cos^2 theta-1)^2-1]^2-1}-(10tan theta)/(1-tan^2 theta)#

God bless...I hope the explanation is useful.