How do you simplify cos8theta-5tan2theta to trigonometric functions of a unit theta?

1 Answer

cos 8theta-5 tan 2theta=
{2[2(2 cos^2 theta-1)^2-1]^2-1}-(10tan theta)/(1-tan^2 theta)

Explanation:

Use double angle formulas for tangent

tan 2A= (2 tan A)/(1-tan^2 A)

Use half-angle formulas for cosine

cos (A/2)=sqrt((1+cos A)/2

so that

cos A=2*cos^2 (A/2)-1

We can now write

cos 8theta=2 cos^2 4theta-1

cos 4theta=2 cos^2 2theta-1

cos 2theta=2 cos^2 theta-1

It follows that

cos 8theta-5 tan 2theta=
{2[2(2 cos^2 theta-1)^2-1]^2-1}-(10tan theta)/(1-tan^2 theta)

God bless...I hope the explanation is useful.