How do you simplify f(theta)=2tan2theta-3sin2theta+sec2theta to trigonometric functions of a unit theta? Trigonometry Trigonometric Identities and Equations Double Angle Identities 1 Answer Shwetank Mauria May 2, 2016 f(theta)=(4tantheta)/(1-tan^2theta)-6sinthetacostheta+1/(2cos^2theta-1) Explanation: f(theta)=2tan2theta-3sin2theta+sectheta or f(theta)=2xx(2tantheta)/(1-tan^2theta)-3xx2sinthetacostheta+1/(cos2theta) or f(theta)=(4tantheta)/(1-tan^2theta)-6sinthetacostheta+1/(2cos^2theta-1) Answer link Related questions What are Double Angle Identities? How do you use a double angle identity to find the exact value of each expression? How do you use a double-angle identity to find the exact value of sin 120°? How do you use double angle identities to solve equations? How do you find all solutions for sin 2x = cos x for the interval [0,2pi]? How do you find all solutions for 4sinthetacostheta=sqrt(3) for the interval [0,2pi]? How do you simplify cosx(2sinx + cosx)-sin^2x? If tan x = 0.3, then how do you find tan 2x? If sin x= 5/3, what is the sin 2x equal to? How do you prove cos2A = 2cos^2 A - 1? See all questions in Double Angle Identities Impact of this question 1542 views around the world You can reuse this answer Creative Commons License