How do you simplify f(θ)=cot4θsin2θ2cos8θ to trigonometric functions of a unit θ?

1 Answer
Aug 2, 2018

See answer in the explanation.

Explanation:

Use expansions forming real and imaginary parts in the

expansions

from (cosθ+isinθ)n=cosnθ+isinnθ,n=2,4and8.

For brevity, c=cosθands=sinθ.

f=f1+f2+f3,

f1=cot4θ=cos(4θ)sin(4θ)

=c46cs(c2s2)+s44cs(c2s2)

f2=sin2θ=2cs

f3=2cos8θ

=2(c828cs(c6s6)+70c2s2(c2s2)+s8)

f=f1+f2+f3.

Of course, simplification is possible, using

(c2+s2)m=1,m=1,2,3,4.