How do you simplify #f(theta)=csc2theta-sin2theta+cos4theta# to trigonometric functions of a unit #theta#?

1 Answer
Jul 6, 2018

#f(theta)= (2cos^2 theta-1)^2(( csc theta sec theta)/2+ 2)-1#

Explanation:

#f(theta)= csc 2 theta -sin 2 theta + cos 4 theta#

#f(theta)= (1/(sin 2 theta) -sin 2 theta) + cos 2(2 theta)# or

#f(theta)= (1- sin^2 2 theta)/(sin 2 theta)+ (cos^2 2 theta-sin^2 2theta) # or

#f(theta)= cos^2 (2 theta)/(sin 2 theta)+ (2cos^2 2 theta-1) # or

#f(theta)= ((cos^2 theta-sin^2 theta)^2)/(2 sin theta cos theta)+ 2(cos^2 theta- sin^2 theta)^2-1# or

#f(theta)= ((2cos^2 theta-1)^2)/(2 sin theta cos theta)+ 2(2cos^2 theta-1)^2-1# or

#f(theta)=(2cos^2 theta-1)^2(1/(2 sin theta cos theta)+ 2)-1# or

#f(theta)= (2cos^2 theta-1)^2(( csc theta sec theta)/2+ 2)-1# [Ans]