How do you simplify #f(theta)=sec4theta-tan4theta# to trigonometric functions of a unit #theta#?

1 Answer
Aug 13, 2017

#f(theta) = (1+4sin^3thetacostheta-4cos^3thetasintheta)/(sin^4theta+cos^4theta-6sin^2thetacos^2theta)#

Explanation:

Use Demoivre's and Euler's theorems to find #sin4theta# and #cos4theta#

#e^(4itheta)= cos4theta + isin4theta = (costheta + isintheta)^4 = cos^4theta + 4icos^3thetasintheta -6 cos^2thetasin^2theta -4isin^3thetacostheta + sin^4theta#

#cos4theta = "Re"(e^(4itheta)) = cos^4theta+sin^4theta-6sin^2thetacos^2theta#

#sin4theta = "Im"(e^(4itheta)) = 4cos^3thetasintheta - 4sin^3thetacostheta#

Using #sec4theta -=1/(cos4theta)# and #tan4theta-= (sin4theta)/(cos4theta)#, prove that #f(theta)# can be written in the above form.